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Abstract: The ve-degree of a vertex u ∈ V (G), denoted by dve(u), is the number
of edges in the subgraph ⟨N [u]⟩. A vertex u is said to n-cover (neighbourhood-
cover) an edge e if e is an edge of the subgraph ⟨N [u]⟩. A set S ⊆ V (G) is called
a n-covering set of a graph G if every edge in G is n-covered by some vertex in S.
The n-covering number αn(G) is the minimum cardinality of a n-covering set of
G. In this paper, we introduce new parameters such as strong (weak) n-covering
number and strong (weak) n-independence number using ve-degrees of vertices, and
we establish a relationship between them. Further, we define and study n-cover
balanced sets.
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1. Introduction

By a graph G, we refer to a finite, simple, undirected graph with a vertex set
V (G) and an edge set E(G). Let |V (G)| = p denote the order of G, and |E(G)| = q
denote the size of G. The terminologies and notations used here follow those in [3,
8]. For any v ∈ V (G), the set N [v] = {u ∈ V (G) : uv ∈ E(G)} ∪ {v} represents
the closed neighborhood of v. If S ⊆ V (G), then the induced subgraph ⟨S⟩ of G
has vertex set S and edge set E(⟨S⟩) = {uv ∈ E(G) | u ∈ S and v ∈ S}. A vertex
v is said to cover an edge e if e is incident on v. A set D ⊆ V (G) is called a vertex
cover of G if every edge in G is covered by some vertex in D. The vertex covering
number α(G) is the minimum cardinality of a vertex cover of G. The concepts of
strong and weak vertex coverings were first introduced by S. S. Kamath and R. S.
Bhat [4]. For an edge e = uv, vertex v strongly covers the edge e if d(v) ≥ d(u). In
such a case, vertex u weakly covers e. A set S ⊆ V (G) is a strong (weak) vertex
cover of a graph G if every edge in G is strongly (weakly) covered by some vertex
in S. The strong (weak) vertex covering number sα(G) (wα(G)) is the minimum
cardinality of a strong (weak) vertex cover of G. These two parameters satisfy the
following inequality: for any graph G, sα(G) ≤ wα(G) ≤ α(G).

The concept of the ve-degree of a vertex was introduced by S. S. Kamath and R.
S. Bhat [5]. The ve-degree of a vertex u ∈ V (G), denoted by dve(u), is the number
of edges in the subgraph ⟨N [u]⟩. If G is a triangle-free graph, then dve(u) = d(u)
for every u ∈ V (G). The maximum ve-degree of a graph G is denoted by ∆ve(G),
and the minimum ve-degree of G is denoted by δve(G). A graph G is said to be
ve-regular if dve(u) = dve(w) for every u,w ∈ V (G).

In 1985, E. Sampathkumar and P. S. Neeralagi [6] initiated the study of the
neighborhood set of a graph. A set S ⊆ V (G) is called a neighborhood set of
G if G =

⋃
v∈S

⟨N [v]⟩, where ⟨N [v]⟩ is the subgraph of G induced by N [v]. The

neighborhood number n0(G) is the minimum cardinality of a neighborhood set of
G. A vertex v is said to n-cover (neighborhood-cover) an edge e if e is an edge
of the induced subgraph ⟨N [v]⟩. A set S ⊆ V (G) is called an n-covering set of
a graph G if every edge in G is n-covered by some vertex in S. The n-covering
number, denoted as αn(G), is the minimum cardinality of a n-covering set of G.
Note that, for any graph G without isolated vertices, any n-covering set of G is also
a neighborhood set of G, and vice versa. Therefore, n0(G) = αn(G) for any graph
G without isolated vertices. Additionally, if a graph G has k isolated vertices,
then n0(G) = αn(G) + k. S. G. Bhat [1] introduced the concept of n-independent
(neighborhood-independent) sets. A set S ⊆ V (G) is said to be n-independent if
every edge e ∈ E(⟨S⟩) is n-covered by a vertex in V (G)− S. The n-independence
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number βn(G) of a graph G is the maximum cardinality of an n-independent set of
G. These two parameters satisfy the following relation: αn(G) + βn(G) = p. The
properties of n-covering sets and n-independent sets were further studied in [2].

2. Strong (weak) n-covering sets and strong (weak) n-independent sets
of a graph

Definition 2.1. A vertex u ∈ V (G) strongly (weakly) n-covers an edge e ∈ E(G)
if u n-covers e and dve(u) ≥ dve(w) (dve(u) ≤ dve(w)) for every w which n-covers
e.

Definition 2.2. A set S ⊆ V (G) is said to be a strong (weak) n-covering set of
G if vertices in S strongly (weakly) n-covers all the edges of G. The strong (weak)
n-covering number sαn(G) (wαn(G)) of G is the minimum cardinality of a strong
(weak) n-covering set of G. That is, sαn(G) = min{|S| : S is a strong n-covering set}.
Definition 2.3. A set S ⊆ V (G) is said to be a strong (weak) n-independent set of
G if for every edge e in ⟨S⟩, there exists a vertex w ∈ V (G)−S such that w weakly
(strongly) n-covers e. The strong (weak) n-independence number sβn(G) (wβn(G))
of G is the maximum cardinality of a strong (weak) n-independent set of G.

Remark 2.1.

(i) For a null p-vertex graph Kp, we assume that sαn(Kp) =
wαn(Kp) = 0 and sβn(Kp) = wβn(Kp) = p.

(ii) Let G be a non-trivial and non-null graph and u∆ve (uδve) be a vertex of G of
maximum (minimum) ve-degree. Then V (G) − {uδve} (V (G) − {u∆ve}) is a
strong (weak) n-covering set of G. Further, {u∆ve} ({uδve}) is a strong (weak)
n-independent set of G.

Example 2.1. For the graph G1 shown in Figure 1, the ve-degrees are as follows:
dve(v1) = 3, dve(v2) = dve(v3) = 5, dve(v4) = 4, dve(v5) = 2, and dve(v6) = 1.

b

b

b

b
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v2

v3

v4 v5 v6

Figure 1: Graph G1



32 South East Asian J. of Mathematics and Mathematical Sciences

Note that {v3, v5} is an n-covering set of G1, {v3, v4, v5} is a strong n-covering set of
G1, and {v1, v4, v5, v6} is a weak n-covering set of G1. Furthermore, {v1, v2, v4, v6}
is an n-independent set of G1, {v2, v3} is a strong n-independent set of G1, and
{v1, v3, v6} is a weak n-independent set of G1. Hence, αn(G1) = 2, sαn(G1) = 3,
wαn(G1) = 4, βn(G1) = 4, sβn(G1) = 2, and wβn(G1) = 3.

2.1. Preliminary Results
We compute strong (weak) n-covering number and strong (weak) n-independence

number of some standard graphs.

Proposition 2.1.

(i) For a path P with p ≥ 3 vertices, αn(P ) = sαn(P ) =
⌊
p
2

⌋
, wαn(P ) =

⌈
p+1
2

⌉
,

sβn(P ) =
⌊
p−1
2

⌋
and βn(P ) = wβn(P ) =

⌈
p
2

⌉
.

(ii) For a cycle C with p ≥ 4 vertices, αn(C) = sαn(C) = wαn(C) =
⌈
p
2

⌉
and

βn(C) = sβn(C) = wβn(C) =
⌈
p
2

⌉
.

(iii) For a complete bipartite graph Km,l, αn(Km,l) = sαn(Km,l) = sβn(Km,l) =
min{m, l} and wαn(Km,l) = βn(Km,l) = wβn(Km,l) = max{m, l}.

(iv) For a complete graph Kp with p vertices, αn(Kp) = sαn(Kp) = wαn(Kp) = 1
and βn(Kp) = sβn(Kp) = wβn(Kp) = p− 1.

(v) For a wheel graphWp with p ≥ 5 vertices, αn(Wp) = sαn(Wp) = 1, wαn(Wp) =⌊
p
2

⌋
, βn(Wp) = wβn(Wp) = p− 1 and sβn(Wp) =

⌈
p
2

⌉
.

(vi) For a windmill graph Wd(k, l) with k ≥ 2 and l ≥ 2, αn(Wd(k, l)) =
sαn(Wd(k, l)) = 1, wαn(Wd(k, l)) = l, βn(Wd(k, l)) = wβn(Wd(k, l)) =
l(k − 1) and sβn(Wd(k, l)) = l(k − 2) + 1.

(vii) For a Dutch windmill graph D
(m)
k with k > 4 and m ≥ 2, αn(D

(m)
k ) =

sαn(D
(m)
k ) = 1 + m

⌈
k−2
2

⌉
, wαn(D

(m)
k ) = m

⌈
k
2

⌉
, βn(D

(m)
k ) = wβn(D

(m)
k ) =

m
⌊
k
2

⌋
and sβn(D

(m)
k ) = 1 +m

⌈
k−3
2

⌉
.

Proposition 2.2. Let G be a connected graph of order p > 1. Then,

(i) sαn(G) = 1 if and only if there exists v ∈ V (G) such that d(v) = p− 1.

(ii) wαn(G) = 1 if and only if G = Kp.
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Remark 2.2.

(i) For any graph G, αn(G) ≤ min{sαn(G), wαn(G)} and
max{sβn(G), wβn(G)} ≤ βn(G).

(ii) If a graph G has no triangles, then sαn(G) = sα(G) and wαn(G) = wα(G).

2.2. Gallai-type results
We first prove the following and obtain Gallai-type results for the new param-

eters defined.

Proposition 2.3. Let G = (V,E) be a graph. For any set S ⊆ V (G),

(i) S is a strong n-covering set of G if and only if V (G) − S is a weak n-
independent set of G.

(ii) S is a weak n-covering set of G if and only if V (G) − S is a strong n-
independent set of G.

Proof. Let S be a strong n-covering set of G and W = V (G)−S. Let e be an edge
in the subgraph ⟨W ⟩. Since S is a strong n-covering set, there exists u ∈ S such
that u strongly n-covers e. Thus, W is a weak n-independent set of G. Conversely,
let W be a weak n-independent set and S = V (G)−W . Let e ∈ E(G). Then, we
consider the following two cases:
Case 1. If e ∈ E (⟨W ⟩), then there exists u ∈ V (G)−W = S such that u strongly
n-covers e.
Case 2. If e /∈ E (⟨W ⟩), then u be a vertex in V (G) which strongly n-covers e.
Now, suppose u ∈ W , then e ∈ E (⟨N [u]⟩) ⊆ E (⟨W ⟩), which is a contradiction.
This implies that, u ∈ V (G)−W = S.
Hence, S is a strong n-covering set of G. With the similar arguments, we can prove
that the complement of a weak n-covering set of G is a strong n-independent set
of G.

Theorem 2.1. For any graph G of order p > 1,

(i) sαn(G) + wβn(G) = p

(ii) wαn(G) + sβn(G) = p.

Proof. Let S be a strong n-covering set of G such that |S| = sαn(G). Then by
Proposition 2.3, V (G) − S is a weak n-independent set of G. Hence, wβn(G) ≥
|V (G) − S| = p − sαn(G). Therefore, sαn(G) + wβn(G) ≥ p. Again, if W is
a weak n-independent set of G such that |W | = wβn(G). Then V (G) − W is a
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strong n-covering set by Proposition 2.3. Hence, sαn(G) ≤ |V (G) −W |. That is,
sαn(G)+wβn(G) ≤ p. Then from the above inequalities (i) follows. Similarly, (ii)
holds.

3. Strong and weak ve-degree of a vertex

Definition 3.1. The strong (weak) ve-degree of a vertex u ∈ V (G), denoted by
dsve(u) (dwve(u)), is the number of edges strongly (weakly) n-covered by u. Then
∆sve(G) (∆wve(G)) and δsve(G) (δsve(G)) represent the maximum strong (weak) ve-
degree and minimum strong (weak) ve-degree of G, respectively.

Definition 3.2. The regular ve-degree of a vertex u ∈ V (G), denoted by drve(u),
is the number of edges which are both strongly and weakly n-covered by u. The
balanced ve-degree of a vertex u ∈ V (G), denoted by dbve(u), is the number of edges
which are neither strongly nor weakly n-covered by u.

Definition 3.3. A vertex u ∈ V (G) is called strong (weak) ve-silent if dsve(u) = 0
(dwve(u) = 0). A set S ⊆ V (G) is said to be strong (weak) ve-silent set if for
every vertex u ∈ S, dsve(u) = 0 (dwve(u) = 0). The strong (weak) ve-silent number
Θsve(G) (Θwve(G)) is the maximum cardinality of a strong (weak) ve-silent set of
G.

Remark 3.1. For any graph G, ∆ve(G) = ∆sve(G).

Theorem 3.1. Let G be a graph. Then for any vertex u ∈ V (G), dve(u) =
dsve(u) + dwve(u) + dbve(u)− drve(u).
Proof. Consider a vertex u ∈ V (G). Let D be the set of all edges n-covered by
u, S be the set of edges strongly n-covered by u, W be the set of edges weakly
n-covered by u, R be the set of edges both strongly and weakly n-covered by u, and
B be the set of edges neither strongly nor weakly n-covered by u. By definition,
S∩W = R, S∩B = ∅, W ∩B = ∅, and R∩B = ∅. Hence, we have dve(u) = |D| =
|S ∪W ∪B| = |S|+ |W |+ |B| − |S ∩W | − |S ∩B| − |W ∩B|+ |S ∩W ∩B|. Since
S∩B = ∅, W∩B = ∅, and R∩B = ∅, this simplifies to dve(u) = |S|+|W |+|B|−|R|.
Therefore, dve(u) = dsve(u) + dwve(u) + dbve(u)− drve(u).

4. Bounds on sαn(G) and wαn(G)

Proposition 4.1. If there exists a strong (weak) n-covering set of a graph G which
is also a strong (weak) n-independent set of G, then

(i) sαn(G) + wαn(G) ≤ p

(ii) sβn(G) + wβn(G) ≥ p.
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Proof. Let S be a strong n-covering set of a graph G which is also a strong n-
independent set of G. Then, sαn(G) ≤ |S|. Also, by the Proposition 2.3, V (G)−S
is a weak n-covering set of G. That is, wαn(G) ≤ |V (G) − S| = p − |S|. Thus,
(i) holds. Using the Theorem 2.1 in (i), we get sβn(G) + wβn(G) ≥ p. Similar
argument holds for weak n-covering set of G which is also a weak n-independent
set of G.

Proposition 4.2. Let G be a graph with order p and size q. Then

(i)
⌈

q
∆ve(G)

⌉
≤ sαn(G) ≤ p−Θsve(G)

(ii)
⌈

q
∆wve(G)

⌉
≤ wαn(G) ≤ p−Θwve(G).

Proof. Since a vertex u ∈ V (G) can strongly n-cover at most ∆ve(G) edges and

we have to strongly n-cover all the q edges, we need at least
⌈

q
∆ve(G)

⌉
vertices to

strongly n-cover all the edges of G. This implies the lower bound in (i) holds.
Let S ⊆ V (G) be a strong ve-silent set of G with maximum cardinality. That is,
|S| = Θsve(G). Since, every vertex in S is strong ve-silent, no vertex in S can
strongly n-cover any edge in G. Therefore, V (G) − S is a strong n-covering set
of G. Hence, sαn(G) ≤ p − |S| = p − Θsve(G). With the similar arguments, the
bounds in (ii) holds.

Example 4.1. We observe that any complete graph Kp attain the lower bounds in
(i) and (ii) of the Proposition 4.2. For any wheel graph Wp, note that sαn(Wp) =
1 = p − (p − 1) = p − Θsve(Wp). Thus, Wp attains the upper bound in (i).
Also, for the graph G1 given in the Figure 1, we have wαn(G1) = 4 = 6 − 2 =
p−Θwve(G1). Hence, G1 attains the upper bound in (ii). Thus the above bounds
in the Proposition 4.2 are sharp.

Remark 4.1.

(i) For any ve-regular graph G, αn(G) = sαn(G) = wαn(G) and βn(G) =
sβn(G) = wβn(G). But, the converse need not be true. Note that, a wheel
graph Wp with p ≥ 5 is not ve-regular, but αn(Wp) = sαn(Wp) and βn(Wp) =
wβn(Wp). The graph G2 given in the Figure 2 is not ve-regular, but sαn(G2) =
3 = wαn(G2) and sβn(G2) = 2 = wβn(G2). Also, for the graph G3 in the
Figure 2, we have αn(G3) = wαn(G3) and βn(G3) = sβn(G3), but G3 is not
ve-regular.

(ii) The numbers sαn(G) and wαn(G) are incomparable in general. For example,
in Figure 2, {v1, v4, v5, v6} is a weak n-covering set of G3 and {v1, v2, v3, v7, v8}
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Figure 2: Graphs G2 and G3

is a strong n-covering set of G3. Hence, sαn(G3) = 5 > 4 = wαn(G3). On the
other hand, for a wheel graph Wp with p ≥ 5, we have sαn(Wp) < wαn(Wp).

5. n-cover Balanced Graphs
E. Sampathkumar and L. Pushpa Latha [7] introduced the concept of domina-

tion balanced graphs. In a similar way, we define n-cover balanced graphs.

Definition 5.1. A graph G is said to be n-cover balanced if there exists a strong
n-covering set S1 of G and a weak n-covering set S2 of G such that S1 ∩ S2 = ϕ.

Example 5.1. A wheel graph Wp is a n-cover balanced graph. Consider the graph
G1 given in the Figure 1. Note that, v4 uniquely strongly n-covers the edge v4v5
and weakly n-covers the edges v2v4 and v3v4. This implies that, v4 belongs to any
strong (weak) n-covering set of G1. Thus, G1 is not a n-cover balanced graph.

Proposition 5.1. For any graph G, the following statements are equivalent:

(i) G is n-cover balanced.

(ii) There exists a strong n-covering set of G which is a strong n-independent set
of G.

(iii) There exists a weak n-covering set of G which is a weak n-independent set of
G.

Proof. Let G be a n-cover balanced graph. Then there exists a strong n-covering
set S1 of G and a weak n-covering set S2 of G such that S1 ∩ S2 = ϕ. Let e be an
edge of the subgraph ⟨S1⟩. Then there exists a vertex u ∈ S2 ⊆ V (G) − S1 such
that u weakly n-covers e. Thus, S1 is a strong n-independent set of G. Similarly, we
can prove that S2 is weak n-independent set of G. This implies that, (i) =⇒ (ii)
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and (i) =⇒ (iii) holds. To prove (ii) =⇒ (i) and (ii) =⇒ (iii): Let S be
a strong n-covering set of G which is a strong n-independent set of G. Then by
Proposition 2.3, V (G) − S is a weak n-covering set of G and weak n-independent
set of G. Thus, G is n-cover balanced. With similar arguments, (iii) =⇒ (i) and
(iii) =⇒ (ii) holds.

Note 5.1. We denote a strong (weak) n-covering set S of G with |S| = sαn(G)
(|S| = wαn(G)) as sαn-set (wαn-set) of G.

Definition 5.2. A n-cover balanced graph G is fully n-cover balanced if there exists
a partition of vertex set V (G) = S1 ∪ S2 such that S1 is a sαn-set of G and S2 is
a wαn-set of G.

Example 5.2. The graph G4 in the Figure 3 is fully n-cover balanced, since
{u2, u5} is the sαn-set of G4 and {u1, u3, u4, u6} is the wαn-set of G4.

bb

b

b

b b

u1 u2

u3

u4

u5 u6

Figure 3: Graph G4

Remark 5.1. Every fully n-cover balanced graph is n-cover balanced. But the
converse need not be true. For example, a wheel graph Wp n-cover balanced, but
not fully n-cover balanced.

Proposition 5.2.

(i) If a graph G is n-cover balanced, then sαn(G) + wαn(G) ≤ p.

(ii) If a graph G is fully n-cover balanced, then sαn(G) + wαn(G) = p.

Proposition 5.3. A graph G is fully n-cover balanced if, and only if, the following
two conditions are satisfied.

(i) sβn(G) + wβn(G) = p

(ii) There exists a sαn-set (wαn-set) which is a strong (weak) n-independent set
of G.
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Proof. Assume that G is fully n-cover balanced. Then, there exists a partition
of vertex set V (G) = S1 ∪ S2 such that S1 is a sαn-set of G and S2 is a wαn-set
of G. This implies that, sβn(G) + wβn(G) = p. By Proposition 2.3, we have
V (G)− S2 = S1 is a strong n-independent set of G. Thus, (ii) holds. Conversely,
assume that the statements (i) and (ii) are true in G. Let S be a sαn-set (wαn-
set) which is a strong (weak) n-independent set of G. Then, by Proposition 2.3,
V (G)−S is a weak n-covering set of G. Now, by (i) and Theorem 2.1, |V (G)−S| =
p− sαn(G) = wβn(G) = p− sβn(G) = wαn(G). That is, V (G)− S wαn-set of G.
Thus, G is fully n-cover balanced.
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