South East Asian J. of Mathematics and Mathematical Sciences Vol. 20, No. 2 (2024), pp. 29-38

DOI: 10.56827/SEAJMMS.2024.2002.3 ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

STRONG (WEAK) NEIGHBOURHOOD COVERING SETS OF A GRAPH

Anusha L., Sayinath Udupa N. V., Surekha R. Bhat* and Prathviraj N.**

Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal - 576104, INDIA

E-mail: anushalaxman23@gmail.com, sayinath.udupa@manipal.edu

*Department of Mathematics, Milagres College, Kallianpur - 576105, Udupi, INDIA

E-mail: surekhabhat@gmail.com

**Manipal School of Information Sciences, Manipal Academy of Higher Education, Manipal - 576104, INDIA

 $\hbox{E-mail: prathviraj.n@manipal.edu}$

(Received: May 11, 2024 Accepted: Aug. 14, 2024 Published: Aug. 30, 2024)

Abstract: The ve-degree of a vertex $u \in V(G)$, denoted by $d_{ve}(u)$, is the number of edges in the subgraph $\langle N[u] \rangle$. A vertex u is said to n-cover (neighbourhood-cover) an edge e if e is an edge of the subgraph $\langle N[u] \rangle$. A set $S \subseteq V(G)$ is called a n-covering set of a graph G if every edge in G is n-covered by some vertex in S. The n-covering number $\alpha_n(G)$ is the minimum cardinality of a n-covering set of G. In this paper, we introduce new parameters such as strong (weak) n-covering number and strong (weak) n-independence number using ve-degrees of vertices, and we establish a relationship between them. Further, we define and study n-cover balanced sets.

Keywords and Phrases: ve-degree, n-cover, strong n-covering number, n-cover balanced graph.

2020 Mathematics Subject Classification: 05C07, 05C69, 05C70.

1. Introduction

By a graph G, we refer to a finite, simple, undirected graph with a vertex set V(G) and an edge set E(G). Let |V(G)| = p denote the order of G, and |E(G)| = qdenote the size of G. The terminologies and notations used here follow those in [3, 8]. For any $v \in V(G)$, the set $N[v] = \{u \in V(G) : uv \in E(G)\} \cup \{v\}$ represents the closed neighborhood of v. If $S \subseteq V(G)$, then the induced subgraph $\langle S \rangle$ of G has vertex set S and edge set $E(\langle S \rangle) = \{uv \in E(G) \mid u \in S \text{ and } v \in S\}$. A vertex v is said to cover an edge e if e is incident on v. A set $D \subseteq V(G)$ is called a vertex cover of G if every edge in G is covered by some vertex in D. The vertex covering number $\alpha(G)$ is the minimum cardinality of a vertex cover of G. The concepts of strong and weak vertex coverings were first introduced by S. S. Kamath and R. S. Bhat [4]. For an edge e = uv, vertex v strongly covers the edge e if $d(v) \ge d(u)$. In such a case, vertex u weakly covers e. A set $S \subseteq V(G)$ is a strong (weak) vertex cover of a graph G if every edge in G is strongly (weakly) covered by some vertex in S. The strong (weak) vertex covering number $s\alpha(G)$ ($w\alpha(G)$) is the minimum cardinality of a strong (weak) vertex cover of G. These two parameters satisfy the following inequality: for any graph G, $s\alpha(G) < w\alpha(G) < \alpha(G)$.

The concept of the ve-degree of a vertex was introduced by S. S. Kamath and R. S. Bhat [5]. The ve-degree of a vertex $u \in V(G)$, denoted by $d_{ve}(u)$, is the number of edges in the subgraph $\langle N[u] \rangle$. If G is a triangle-free graph, then $d_{ve}(u) = d(u)$ for every $u \in V(G)$. The maximum ve-degree of a graph G is denoted by $\Delta_{ve}(G)$, and the minimum ve-degree of G is denoted by $\delta_{ve}(G)$. A graph G is said to be ve-regular if $d_{ve}(u) = d_{ve}(w)$ for every $u, w \in V(G)$.

In 1985, E. Sampathkumar and P. S. Neeralagi [6] initiated the study of the neighborhood set of a graph. A set $S \subseteq V(G)$ is called a neighborhood set of G if $G = \bigcup_{v \in S} \langle N[v] \rangle$, where $\langle N[v] \rangle$ is the subgraph of G induced by N[v]. The neighborhood number $n_0(G)$ is the minimum cardinality of a neighborhood set of G. A vertex v is said to n-cover (neighborhood-cover) an edge e if e is an edge of the induced subgraph $\langle N[v] \rangle$. A set $S \subseteq V(G)$ is called an n-covering set of a graph G if every edge in G is n-covered by some vertex in G. The n-covering number, denoted as $\alpha_n(G)$, is the minimum cardinality of a n-covering set of G. Note that, for any graph G without isolated vertices, any n-covering set of G is also a neighborhood set of G, and vice versa. Therefore, $n_0(G) = \alpha_n(G)$ for any graph G without isolated vertices. Additionally, if a graph G has G isolated vertices, then G is also have G is also a neighborhood-independent) sets. A set G is said to be n-independent (neighborhood-independent) sets. A set G is said to be n-independent if every edge G is n-covered by a vertex in G. The n-independence

number $\beta_n(G)$ of a graph G is the maximum cardinality of an n-independent set of G. These two parameters satisfy the following relation: $\alpha_n(G) + \beta_n(G) = p$. The properties of n-covering sets and n-independent sets were further studied in [2].

2. Strong (weak) n-covering sets and strong (weak) n-independent sets of a graph

Definition 2.1. A vertex $u \in V(G)$ strongly (weakly) n-covers an edge $e \in E(G)$ if u n-covers e and $d_{ve}(u) \geq d_{ve}(w)$ ($d_{ve}(u) \leq d_{ve}(w)$) for every w which n-covers e.

Definition 2.2. A set $S \subseteq V(G)$ is said to be a strong (weak) n-covering set of G if vertices in S strongly (weakly) n-covers all the edges of G. The strong (weak) n-covering number $s\alpha_n(G)$ (w $\alpha_n(G)$) of G is the minimum cardinality of a strong (weak) n-covering set of G. That is, $s\alpha_n(G) = \min\{|S| : S \text{ is a strong } n\text{-covering set}\}$.

Definition 2.3. A set $S \subseteq V(G)$ is said to be a strong (weak) n-independent set of G if for every edge e in $\langle S \rangle$, there exists a vertex $w \in V(G) - S$ such that w weakly (strongly) n-covers e. The strong (weak) n-independence number $s\beta_n(G)$ ($w\beta_n(G)$) of G is the maximum cardinality of a strong (weak) n-independent set of G.

Remark 2.1.

- (i) For a null p-vertex graph $\overline{K_p}$, we assume that $s\alpha_n(\overline{K_p}) = w\alpha_n(\overline{K_p}) = 0$ and $s\beta_n(\overline{K_p}) = w\beta_n(\overline{K_p}) = p$.
- (ii) Let G be a non-trivial and non-null graph and $u_{\Delta_{ve}}(u_{\delta_{ve}})$ be a vertex of G of maximum (minimum) ve-degree. Then $V(G) \{u_{\delta_{ve}}\}$ ($V(G) \{u_{\Delta_{ve}}\}$) is a strong (weak) n-covering set of G. Further, $\{u_{\Delta_{ve}}\}$ ($\{u_{\delta_{ve}}\}$) is a strong (weak) n-independent set of G.

Example 2.1. For the graph G_1 shown in Figure 1, the ve-degrees are as follows: $d_{ve}(v_1) = 3$, $d_{ve}(v_2) = d_{ve}(v_3) = 5$, $d_{ve}(v_4) = 4$, $d_{ve}(v_5) = 2$, and $d_{ve}(v_6) = 1$.

Figure 1: Graph G_1

Note that $\{v_3, v_5\}$ is an n-covering set of G_1 , $\{v_3, v_4, v_5\}$ is a strong n-covering set of G_1 , and $\{v_1, v_4, v_5, v_6\}$ is a weak n-covering set of G_1 . Furthermore, $\{v_1, v_2, v_4, v_6\}$ is an n-independent set of G_1 , $\{v_2, v_3\}$ is a strong n-independent set of G_1 , and $\{v_1, v_3, v_6\}$ is a weak n-independent set of G_1 . Hence, $\alpha_n(G_1) = 2$, $s\alpha_n(G_1) = 3$, $w\alpha_n(G_1) = 4$, $\beta_n(G_1) = 4$, $s\beta_n(G_1) = 2$, and $w\beta_n(G_1) = 3$.

2.1. Preliminary Results

We compute strong (weak) n-covering number and strong (weak) n-independence number of some standard graphs.

Proposition 2.1.

- (i) For a path P with $p \geq 3$ vertices, $\alpha_n(P) = s\alpha_n(P) = \lfloor \frac{p}{2} \rfloor$, $w\alpha_n(P) = \lceil \frac{p+1}{2} \rceil$, $s\beta_n(P) = \lfloor \frac{p-1}{2} \rfloor$ and $\beta_n(P) = w\beta_n(P) = \lceil \frac{p}{2} \rceil$.
- (ii) For a cycle C with $p \ge 4$ vertices, $\alpha_n(C) = s\alpha_n(C) = w\alpha_n(C) = \lceil \frac{p}{2} \rceil$ and $\beta_n(C) = s\beta_n(C) = w\beta_n(C) = \lceil \frac{p}{2} \rceil$.
- (iii) For a complete bipartite graph $K_{m,l}$, $\alpha_n(K_{m,l}) = s\alpha_n(K_{m,l}) = s\beta_n(K_{m,l}) = \min\{m,l\}$ and $w\alpha_n(K_{m,l}) = \beta_n(K_{m,l}) = w\beta_n(K_{m,l}) = \max\{m,l\}$.
- (iv) For a complete graph K_p with p vertices, $\alpha_n(K_p) = s\alpha_n(K_p) = w\alpha_n(K_p) = 1$ and $\beta_n(K_p) = s\beta_n(K_p) = w\beta_n(K_p) = p-1$.
- (v) For a wheel graph W_p with $p \ge 5$ vertices, $\alpha_n(W_p) = s\alpha_n(W_p) = 1$, $w\alpha_n(W_p) = \lfloor \frac{p}{2} \rfloor$, $\beta_n(W_p) = w\beta_n(W_p) = p 1$ and $s\beta_n(W_p) = \lceil \frac{p}{2} \rceil$.
- (vi) For a windmill graph Wd(k,l) with $k \geq 2$ and $l \geq 2$, $\alpha_n(Wd(k,l)) = s\alpha_n(Wd(k,l)) = 1$, $w\alpha_n(Wd(k,l)) = l$, $\beta_n(Wd(k,l)) = w\beta_n(Wd(k,l)) = l(k-1)$ and $s\beta_n(Wd(k,l)) = l(k-2) + 1$.
- (vii) For a Dutch windmill graph $D_k^{(m)}$ with k > 4 and $m \ge 2$, $\alpha_n(D_k^{(m)}) = s\alpha_n(D_k^{(m)}) = 1 + m \lceil \frac{k-2}{2} \rceil$, $w\alpha_n(D_k^{(m)}) = m \lceil \frac{k}{2} \rceil$, $\beta_n(D_k^{(m)}) = w\beta_n(D_k^{(m)}) = m \lceil \frac{k}{2} \rceil$ and $s\beta_n(D_k^{(m)}) = 1 + m \lceil \frac{k-3}{2} \rceil$.

Proposition 2.2. Let G be a connected graph of order p > 1. Then,

- (i) $s\alpha_n(G) = 1$ if and only if there exists $v \in V(G)$ such that d(v) = p 1.
- (ii) $w\alpha_n(G) = 1$ if and only if $G = K_p$.

Remark 2.2.

- (i) For any graph G, $\alpha_n(G) \leq \min\{s\alpha_n(G), w\alpha_n(G)\}$ and $\max\{s\beta_n(G), w\beta_n(G)\} \leq \beta_n(G)$.
- (ii) If a graph G has no triangles, then $s\alpha_n(G) = s\alpha(G)$ and $w\alpha_n(G) = w\alpha(G)$.

2.2. Gallai-type results

We first prove the following and obtain Gallai-type results for the new parameters defined.

Proposition 2.3. Let G = (V, E) be a graph. For any set $S \subseteq V(G)$,

- (i) S is a strong n-covering set of G if and only if V(G) S is a weak n-independent set of G.
- (ii) S is a weak n-covering set of G if and only if V(G) S is a strong n-independent set of G.

Proof. Let S be a strong n-covering set of G and W = V(G) - S. Let e be an edge in the subgraph $\langle W \rangle$. Since S is a strong n-covering set, there exists $u \in S$ such that u strongly n-covers e. Thus, W is a weak n-independent set of G. Conversely, let W be a weak n-independent set and S = V(G) - W. Let $e \in E(G)$. Then, we consider the following two cases:

Case 1. If $e \in E(\langle W \rangle)$, then there exists $u \in V(G) - W = S$ such that u strongly n-covers e.

Case 2. If $e \notin E(\langle W \rangle)$, then u be a vertex in V(G) which strongly n-covers e. Now, suppose $u \in W$, then $e \in E(\langle N[u] \rangle) \subseteq E(\langle W \rangle)$, which is a contradiction. This implies that, $u \in V(G) - W = S$.

Hence, S is a strong n-covering set of G. With the similar arguments, we can prove that the complement of a weak n-covering set of G is a strong n-independent set of G.

Theorem 2.1. For any graph G of order p > 1,

- (i) $s\alpha_n(G) + w\beta_n(G) = p$
- (ii) $w\alpha_n(G) + s\beta_n(G) = p$.

Proof. Let S be a strong n-covering set of G such that $|S| = s\alpha_n(G)$. Then by Proposition 2.3, V(G) - S is a weak n-independent set of G. Hence, $w\beta_n(G) \ge |V(G) - S| = p - s\alpha_n(G)$. Therefore, $s\alpha_n(G) + w\beta_n(G) \ge p$. Again, if W is a weak n-independent set of G such that $|W| = w\beta_n(G)$. Then V(G) - W is a

strong n-covering set by Proposition 2.3. Hence, $s\alpha_n(G) \leq |V(G) - W|$. That is, $s\alpha_n(G) + w\beta_n(G) \leq p$. Then from the above inequalities (i) follows. Similarly, (ii) holds.

3. Strong and weak ve-degree of a vertex

Definition 3.1. The strong (weak) ve-degree of a vertex $u \in V(G)$, denoted by $d_{sve}(u)$ ($d_{wve}(u)$), is the number of edges strongly (weakly) n-covered by u. Then $\Delta_{sve}(G)$ ($\Delta_{wve}(G)$) and $\delta_{sve}(G)$ ($\delta_{sve}(G)$) represent the maximum strong (weak) vedegree and minimum strong (weak) vedegree of G, respectively.

Definition 3.2. The regular ve-degree of a vertex $u \in V(G)$, denoted by $d_{rve}(u)$, is the number of edges which are both strongly and weakly n-covered by u. The balanced ve-degree of a vertex $u \in V(G)$, denoted by $d_{bve}(u)$, is the number of edges which are neither strongly nor weakly n-covered by u.

Definition 3.3. A vertex $u \in V(G)$ is called strong (weak) ve-silent if $d_{sve}(u) = 0$ ($d_{wve}(u) = 0$). A set $S \subseteq V(G)$ is said to be strong (weak) ve-silent set if for every vertex $u \in S$, $d_{sve}(u) = 0$ ($d_{wve}(u) = 0$). The strong (weak) ve-silent number $\Theta_{sve}(G)$ ($\Theta_{wve}(G)$) is the maximum cardinality of a strong (weak) ve-silent set of G.

Remark 3.1. For any graph G, $\Delta_{ve}(G) = \Delta_{sve}(G)$.

Theorem 3.1. Let G be a graph. Then for any vertex $u \in V(G)$, $d_{ve}(u) = d_{sve}(u) + d_{wve}(u) + d_{bve}(u) - d_{rve}(u)$.

Proof. Consider a vertex $u \in V(G)$. Let D be the set of all edges n-covered by u, S be the set of edges strongly n-covered by u, W be the set of edges weakly n-covered by u, R be the set of edges both strongly and weakly n-covered by u, and B be the set of edges neither strongly nor weakly n-covered by u. By definition, $S \cap W = R, S \cap B = \emptyset, W \cap B = \emptyset, \text{ and } R \cap B = \emptyset.$ Hence, we have $d_{ve}(u) = |D| = |S \cup W \cup B| = |S| + |W| + |B| - |S \cap W| - |S \cap B| - |W \cap B| + |S \cap W \cap B|.$ Since $S \cap B = \emptyset, W \cap B = \emptyset, \text{ and } R \cap B = \emptyset, \text{ this simplifies to } d_{ve}(u) = |S| + |W| + |B| - |R|.$ Therefore, $d_{ve}(u) = d_{sve}(u) + d_{wve}(u) + d_{bve}(u) - d_{rve}(u).$

4. Bounds on $s\alpha_n(G)$ and $w\alpha_n(G)$

Proposition 4.1. If there exists a strong (weak) n-covering set of a graph G which is also a strong (weak) n-independent set of G, then

(i)
$$s\alpha_n(G) + w\alpha_n(G) \le p$$

(ii)
$$s\beta_n(G) + w\beta_n(G) \ge p$$
.

Proof. Let S be a strong n-covering set of a graph G which is also a strong n-independent set of G. Then, $s\alpha_n(G) \leq |S|$. Also, by the Proposition 2.3, V(G) - S is a weak n-covering set of G. That is, $w\alpha_n(G) \leq |V(G) - S| = p - |S|$. Thus, (i) holds. Using the Theorem 2.1 in (i), we get $s\beta_n(G) + w\beta_n(G) \geq p$. Similar argument holds for weak n-covering set of G which is also a weak n-independent set of G.

Proposition 4.2. Let G be a graph with order p and size q. Then

(i)
$$\left\lceil \frac{q}{\Delta_{ve}(G)} \right\rceil \le s\alpha_n(G) \le p - \Theta_{sve}(G)$$

(ii)
$$\left\lceil \frac{q}{\Delta_{wve}(G)} \right\rceil \le w\alpha_n(G) \le p - \Theta_{wve}(G)$$
.

Proof. Since a vertex $u \in V(G)$ can strongly n-cover at most $\Delta_{ve}(G)$ edges and we have to strongly n-cover all the q edges, we need at least $\left\lceil \frac{q}{\Delta_{ve}(G)} \right\rceil$ vertices to strongly n-cover all the edges of G. This implies the lower bound in (i) holds. Let $S \subseteq V(G)$ be a strong ve-silent set of G with maximum cardinality. That is, $|S| = \Theta_{sve}(G)$. Since, every vertex in S is strong ve-silent, no vertex in S can strongly n-cover any edge in G. Therefore, V(G) - S is a strong n-covering set of G. Hence, $s\alpha_n(G) \leq p - |S| = p - \Theta_{sve}(G)$. With the similar arguments, the bounds in (ii) holds.

Example 4.1. We observe that any complete graph K_p attain the lower bounds in (i) and (ii) of the Proposition 4.2. For any wheel graph W_p , note that $s\alpha_n(W_p) = 1 = p - (p-1) = p - \Theta_{sve}(W_p)$. Thus, W_p attains the upper bound in (i). Also, for the graph G_1 given in the Figure 1, we have $w\alpha_n(G_1) = 4 = 6 - 2 = p - \Theta_{wve}(G_1)$. Hence, G_1 attains the upper bound in (ii). Thus the above bounds in the Proposition 4.2 are sharp.

Remark 4.1.

- (i) For any ve-regular graph G, $\alpha_n(G) = s\alpha_n(G) = w\alpha_n(G)$ and $\beta_n(G) = s\beta_n(G) = w\beta_n(G)$. But, the converse need not be true. Note that, a wheel graph W_p with $p \geq 5$ is not ve-regular, but $\alpha_n(W_p) = s\alpha_n(W_p)$ and $\beta_n(W_p) = w\beta_n(W_p)$. The graph G_2 given in the Figure 2 is not ve-regular, but $s\alpha_n(G_2) = 3 = w\alpha_n(G_2)$ and $s\beta_n(G_2) = 2 = w\beta_n(G_2)$. Also, for the graph G_3 in the Figure 2, we have $\alpha_n(G_3) = w\alpha_n(G_3)$ and $\beta_n(G_3) = s\beta_n(G_3)$, but G_3 is not ve-regular.
- (ii) The numbers $s\alpha_n(G)$ and $w\alpha_n(G)$ are incomparable in general. For example, in Figure 2, $\{v_1, v_4, v_5, v_6\}$ is a weak n-covering set of G_3 and $\{v_1, v_2, v_3, v_7, v_8\}$

Figure 2: Graphs G_2 and G_3

is a strong n-covering set of G_3 . Hence, $s\alpha_n(G_3) = 5 > 4 = w\alpha_n(G_3)$. On the other hand, for a wheel graph W_p with $p \ge 5$, we have $s\alpha_n(W_p) < w\alpha_n(W_p)$.

5. n-cover Balanced Graphs

E. Sampathkumar and L. Pushpa Latha [7] introduced the concept of domination balanced graphs. In a similar way, we define n-cover balanced graphs.

Definition 5.1. A graph G is said to be n-cover balanced if there exists a strong n-covering set S_1 of G and a weak n-covering set S_2 of G such that $S_1 \cap S_2 = \phi$.

Example 5.1. A wheel graph W_p is a n-cover balanced graph. Consider the graph G_1 given in the Figure 1. Note that, v_4 uniquely strongly n-covers the edge v_4v_5 and weakly n-covers the edges v_2v_4 and v_3v_4 . This implies that, v_4 belongs to any strong (weak) n-covering set of G_1 . Thus, G_1 is not a n-cover balanced graph.

Proposition 5.1. For any graph G, the following statements are equivalent:

- (i) G is n-cover balanced.
- (ii) There exists a strong n-covering set of G which is a strong n-independent set of G.
- (iii) There exists a weak n-covering set of G which is a weak n-independent set of G.

Proof. Let G be a n-cover balanced graph. Then there exists a strong n-covering set S_1 of G and a weak n-covering set S_2 of G such that $S_1 \cap S_2 = \phi$. Let e be an edge of the subgraph $\langle S_1 \rangle$. Then there exists a vertex $u \in S_2 \subseteq V(G) - S_1$ such that u weakly n-covers e. Thus, S_1 is a strong n-independent set of G. Similarly, we can prove that S_2 is weak n-independent set of G. This implies that, $S_2 \cap G$ is

and $(i) \implies (iii)$ holds. To prove $(ii) \implies (i)$ and $(ii) \implies (iii)$: Let S be a strong n-covering set of G which is a strong n-independent set of G. Then by Proposition 2.3, V(G) - S is a weak n-covering set of G and weak n-independent set of G. Thus, G is n-cover balanced. With similar arguments, $(iii) \implies (i)$ and $(iii) \implies (ii)$ holds.

Note 5.1. We denote a strong (weak) n-covering set S of G with $|S| = s\alpha_n(G)$ ($|S| = w\alpha_n(G)$) as $s\alpha_n$ -set ($w\alpha_n$ -set) of G.

Definition 5.2. A n-cover balanced graph G is fully n-cover balanced if there exists a partition of vertex set $V(G) = S_1 \cup S_2$ such that S_1 is a $s\alpha_n$ -set of G and S_2 is a $w\alpha_n$ -set of G.

Example 5.2. The graph G_4 in the Figure 3 is fully n-cover balanced, since $\{u_2, u_5\}$ is the $s\alpha_n$ -set of G_4 and $\{u_1, u_3, u_4, u_6\}$ is the $w\alpha_n$ -set of G_4 .

Figure 3: Graph G_4

Remark 5.1. Every fully n-cover balanced graph is n-cover balanced. But the converse need not be true. For example, a wheel graph W_p n-cover balanced, but not fully n-cover balanced.

Proposition 5.2.

- (i) If a graph G is n-cover balanced, then $s\alpha_n(G) + w\alpha_n(G) \leq p$.
- (ii) If a graph G is fully n-cover balanced, then $s\alpha_n(G) + w\alpha_n(G) = p$.

Proposition 5.3. A graph G is fully n-cover balanced if, and only if, the following two conditions are satisfied.

- (i) $s\beta_n(G) + w\beta_n(G) = p$
- (ii) There exists a $s\alpha_n$ -set $(w\alpha_n$ -set) which is a strong (weak) n-independent set of G.

Proof. Assume that G is fully n-cover balanced. Then, there exists a partition of vertex set $V(G) = S_1 \cup S_2$ such that S_1 is a $s\alpha_n$ -set of G and S_2 is a $w\alpha_n$ -set of G. This implies that, $s\beta_n(G) + w\beta_n(G) = p$. By Proposition 2.3, we have $V(G) - S_2 = S_1$ is a strong n-independent set of G. Thus, (ii) holds. Conversely, assume that the statements (i) and (ii) are true in G. Let G be a G0 be a set of G1 which is a strong (weak) n-independent set of G2. Then, by Proposition 2.3, V(G) - S1 is a weak n-covering set of G2. Now, by (i) and Theorem 2.1, $|V(G) - S| = p - s\alpha_n(G) = w\beta_n(G) = p - s\beta_n(G) = w\alpha_n(G)$. That is, V(G) - S1 wan-set of G2. Thus, G1 is fully n-cover balanced.

References

- [1] Bhat, S. G., Some new aspects of independent sets and clique related parameters of a graph, Doctoral Dissertation, Manipal Academy of Higher Education, Manipal, Karnataka, 2019.
- [2] Bhat, S. R., Bhat, R. S. and Bhat, S. G., Properties of n-Independent Sets and n-Complete Sets of a Graph, IAENG International Journal of Computer Science, 50(4) (2023).
- [3] Harary, F., Graph Theory, Addison Wesley, Reading, Massachusetts, 1969.
- [4] Kamath, S. S. and Bhat, R. S., On Strong (weak) independent sets and vertex coverings of a graph, Discrete Mathematics, 307 (2007), 1136-1145.
- [5] Kamath, S. S. and Bhat, R. S., Some New Degree Concepts in Graphs, Proceedings of ICDM, (2006), 237-243.
- [6] Sampathkumar, E. and Neeralagi P. S., The neighbourhood number of a graph, Indian J. Pure and Appl. Math., 16(2) (1985), 126-132.
- [7] Sampathkumar, E. and Pushpalatha, L., Strong weak domination and domination balance in a graph, Discrete Mathematics, 161 (1996), 235-242.
- [8] West, D. B., Introduction to Graph Theory, Prentice Hall, Upper Saddle River, New Jersey, 1996.